Fine mapping of the major Soybean dwarf virus resistance gene Rsdv1 of the soybean cultivar ‘Wilis’

نویسندگان

  • Yoko Yamashita
  • Toru Takeuchi
  • Shizen Ohnishi
  • Jun Sasaki
  • Akiko Tazawa
چکیده

Soybean dwarf virus (SbDV), a Luteoviridae family member, causes dwarfing, yellowing and sterility of soybean (Glycine max), leading to one of the most serious problems in soybean production in northern Japan. Previous studies revealed that the Indonesian soybean cultivar 'Wilis' is resistant to SbDV and that the resistance can be introduced into Japanese cultivars. A major QTL for SbDV resistance has been reported between SSR markers Sat_217 and Satt211 on chromosome 5. In this study, we named this QTL Rsdv1 (resistance to SbDV) and developed near-isogenic lines incorporating Rsdv1 (Rsdv1-NILs) using Sat_217 and Satt211 markers. The Rsdv1-NILs were resistant to SbDV in greenhouse inoculation and field tests, indicating that Rsdv1 alone is sufficient for the resistance phenotype. We fine-mapped Rsdv1 within the 44-kb region between Sat_11 and Sct_13. None of the six genes predicted in this region was closely related to known virus resistance genes in plants. Thus, Rsdv1 may confer resistance by a previously unknown mechanism. We suggest that Rsdv1 may be a useful source for the Japanese soybean breeding program to introduce SbDV resistance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fine mapping of foxglove aphid (Aulacorthum solani) resistance gene Raso1 in soybean and its effect on tolerance to Soybean dwarf virus transmitted by foxglove aphid

Soybean dwarf virus (SbDV) causes serious dwarfing, yellowing and sterility in soybean (Glycine max). The soybean cv. Adams is tolerant to SbDV infection in the field and exhibits antibiosis to foxglove aphid (Aulacorthum solani), which transmits SbDV. This antibiosis (termed "aphid resistance") is required for tolerance to SbDV in the field in segregated progenies of Adams. A major quantitativ...

متن کامل

Mapping tightly linked genes controlling potyvirus infection at the Rsv1 and Rpv1 region in soybean.

Soybean mosaic virus (SMV) and peanut mottle virus (PMV) are two potyviruses that cause yield losses and reduce seed quality in infested soybean (Glycine max (L.) Merr.) fields throughout the world. Rsv1 and Rpv1 are genes that provide soybean with resistance to SMV and PMV, respectively. Isolating and characterizing Rsv1 and Rpv1 are instrumental in providing insight into the molecular mechani...

متن کامل

Genome-Wide SNP Identification and Characterization in Two Soybean Cultivars with Contrasting Mungbean Yellow Mosaic India Virus Disease Resistance Traits

Mungbean yellow mosaic India virus (MYMIV) is a bipartite Geminivirus, which causes severe yield loss in soybean (Glycine max). Considering this, the present study was conducted to develop large-scale genome-wide single nucleotide polymorphism (SNP) markers and identify potential markers linked with known disease resistance loci for their effective use in genomics-assisted breeding to impart du...

متن کامل

Fine Mapping and Identification of a Novel Phytophthora Root Rot Resistance Locus RpsZS18 on Chromosome 2 in Soybean

Phytophthora root rot (PRR) caused by Phytophthora sojae is a major soybean disease that causes severe economic losses worldwide. Using soybean cultivars carrying a Rps resistance gene is the most effective strategy for controlling this disease. We previously detected a novel Phytophthora resistance gene, RpsZS18, on chromosome 2 of the soybean cultivar Zaoshu18. The aim of the present study wa...

متن کامل

Screening and genetic analysis of resistance to peanut stunt virus in soybean: identification of the putative Rpsv1 resistance gene

The peanut stunt virus (PSV) causes yield losses in soybean and reduced seed quality due to seed mottling. The objectives of this study were to determine the phenotypic reactions of soybean germplasms to inoculation with two PSV isolates (PSV-K, PSV-T), the inheritance of PSV resistance in soybean cultivars, and the locus of the PSV resistance gene. We investigated the PSV resistance of 132 soy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2013